Ronan Engineering, a privately held California corporation founded in 1959, has enjoyed continuous growth over years based on innovative products, advanced research and development, and unsurpassed customer support.

Our domestic and internationally based engineering and manufacturing capabilities allow us to quickly service our customers’ requirements with a large variety of standard products and customized systems at the most economical terms. Proven product reliability, consistent after-sales service, and our willingness to apply corporate resources to solve problems, have given us nuclear measurement recognition in the process and steel industries.

Starting with ionization chamber detectors, we made the obvious technological progression by manufacturing a new generation of detectors using advanced scintillating material for efficient radiation detection in conjunction with state-of-the-art microprocessor based electronics for precision gauging.

In keeping up with the rapidly changing customer needs in radiation measurement technology, Ronan pioneered a low radiation level scintillation detector with low cost of ownership and sensitive measurement capability that set the new standards in the nuclear measurement industry.

Continuous research and development, and our constant involvement with customers in numerous applications, have added Geiger-Mueller Tube Detectors, Ion Chamber Detectors, Scintillation Detectors, Curved Scintillation Detectors, and Flexible Scintillation Detectors to the Ronan measurement line.

Advancements in source holder design enables Ronan to offer a variety of source sizes suitable for most common applications. Our RLL Series of source holders are mechanically small in size and weight, offer relaxed regulatory requirements, are ideal for density and weight scale applications, and some level applications in various industries.
The Ronan X96 Continuous Level Measurement System is ideally suited for continuous level measurement of liquids and solids contained in a vessel without making contact with the process material. Since all system components are not wetted to the process, the continuous on-line level measurement can be made regardless of such conditions as extreme temperature, high pressure, and corrosive, toxic or abrasive materials within the vessel.

Each system consists of a gamma source, detector, and microprocessor. The gamma source, typically mounted external to the vessel, emits energy through the vessel walls collimated in a direction towards a detector, mounted on the opposite side of the vessel. The gamma energy reaches the detector when the vessel is empty. As the process level rises in the vessel, the gamma energy reaching the detector will decrease in an inversely proportional relationship to level. The detector measures this changing gamma field and sends a proportional signal to the microprocessor. The X96 microprocessor linearizes, filters, and correlates this signal to a level measurement. A graphic LCD display and outputs are then generated to meet the application requirements.

Features

- Non-contact Measurement of Liquids or Solids
- Unaffected by:
 - Extreme Temperature
 - Extreme Pressures
 - Corrosive, Abrasive, or Toxic Materials
 - Dust or Moisture
- Gamma Energy is Absorbed Inversely Proportional to Level
- Point or Strip Sources
- Straight, Curved, or Flexible Detectors
- Optional Vapor Density Compensation for Vessels with Changing Vapor Density
- Optional Multi-point Autocalibration Points
- Optional Radiation Discrimination for Indication and Latching of Outputs when Incidental Radiation may Affect Measurement Readings

Specifications

Detectors:
- Scintillation Detectors Active Lengths up to 15 Feet*
- Ion Chamber Detectors Active Length up to 20 Feet*
- Flexible Scintillation Detectors Active Lengths up to 20 Feet*
- Detectors Available in Explosion Proof, NEMA-4X, NEMA-4, and I.S. Configurations

Microprocessors:
- Remote to Detector or Integral in Head of Detector
- LCD Graphic Back-lit Display
- HART Communications
- Three Analog Outputs
- Four Relay Outputs
- Four Solid State Outputs

Source Holders:
- Sealed Housing Made of Ductile Iron, Stainless Steel, or PVC Coated with an Internal Rotary Shutter
- Point and Strip Sources
- Low Level Gamma Source Holder

*Consult Factory for Longer Lengths

Continuous Level Measurement

The Ronan X96 Continuous Level Measurement System is ideally suited for continuous level measurement of liquids and solids contained in a vessel without making contact with the process material. Since all system components are not wetted to the process, the continuous on-line level measurement can be made regardless of such conditions as extreme temperature, high pressure, and corrosive, toxic or abrasive materials within the vessel.

Each system consists of a gamma source, detector, and microprocessor. The gamma source, typically mounted external to the vessel, emits energy through the vessel walls collimated in a direction towards a detector, mounted on the opposite side of the vessel. The gamma energy reaches the detector when the vessel is empty. As the process level rises in the vessel, the gamma energy reaching the detector will decrease in an inversely proportional relationship to level. The detector measures this changing gamma field and sends a proportional signal to the microprocessor. The X96 microprocessor linearizes, filters, and correlates this signal to a level measurement. A graphic LCD display and outputs are then generated to meet the application requirements.
The Ronan X96 Density/Mass Flow Measurement System is ideally suited for continuous density measurement of liquids, slurries, and solids contained in a pipe or vessel without making contact with the process material. Since all system components are not wetted to the process such conditions as extreme temperature, high pressure, sterile, corrosive, toxic, or abrasive materials within the pipe do not affect the continuous on-line density measurement.

Each density system consists of a gamma source, detector, and microprocessor. A mass flow system includes an input from a flow meter into the density microprocessor for mass flow calculations. The gamma source, typically mounted external to a pipe, emits energy through the pipe walls collimated in a direction towards a detector, mounted on the opposite side of the pipe. The pipe needs to be kept full of process to hold process volume constant. As the process density increases, the gamma energy reaching the detector will decrease in an inversely proportional relationship to density. The detector measures this changing gamma field and sends a proportional signal to the microprocessor. The X96 microprocessor linearizes, filters, and correlates this signal to a density measurement. A graphic LCD display and outputs are then generated to meet the application requirements.
The Ronan Interface Level/Density Measurement System is ideally suited for measurement of multiple stratified layered processes. The system locates the interface level of multiple layers, and produces a density reading of each layer. Measurement is achieved through the use of non-contact gamma-ray transmission, where the gamma field is inversely proportional to the process density. The system has multiple settings that include vessel profile, process level profile, rag layer scan, density seek, and manual control.

Components of the system include a gamma source, scintillation detector, motor drive assembly, and control microprocessor. The motor drive assembly moves the gamma source and scintillation detector in a vertical plane through guide wells, often located inside a vessel. The control microprocessor controls the movement of the source and detector, continuously monitoring their elevation. A density value is calculated in the microprocessor by evaluating the output of the scintillation detector. These two values are then outputted and displayed. Depending on the mode of operation selected, this information offers assistance to process control. Level measurement often achieves +/-.2 inch and density repeatability of +/-.005 specific gravity.

FEATURES
- Non-contact Measurement
- Easy and Quick Installation – No Mechanical Maintenance
- Unaffected by:
 - High Temperature and Pressure
 - Corrosive, Abrasive and Toxic Materials
 - Dust, Moisture or Chemical Properties
- Suitable for Hazardous Locations
- NEMA Standard Enclosures for Indoor/Outdoor Installations
- Integral Local or Remote Electronic Module Installation
- Multi-point Chassis with Plug-in Type Modules
- SPDT Relays, Indicators for Normal and Alarm States
- Push-button Referencing

SPECIFICATIONS
- Detectors:
 - Geiger-Mueller Tube Detectors: Standard and Extra-sensitive
 - Integral or Remote Electronics
 - Explosion Proof or NEMA-4X Housing
- Scintillation Detectors:
 - Works on Low Radiation Fields
 - Explosion Proof or NEMA-4X Housings
- Microprocessors:
 - Integral or Remote to Detector
 - 24 VDC, 115 V AC, or 220 VAC Power
 - Two 10 Amp Relay Outputs
 - Programmable Hand Held Programmer
- Source Holders:
 - Sealed Housing Made of Ductile Iron, Stainless Steel, or PVC Coated with Internal Rotary Shutter
 - Point and Strip Sources
 - Low Level Gamma Source Holder
- Levels: 0-20 mA/0-10 V Analog Output
- Density: 0-20 mA/0-10 V Analog Output
- Explosion Proof with Nitrogen Purge
- Vessel Profile
- Continuous Scan
- Density Seek
- Rag Layer Interface Track
- Manual Up
- Manual Down
- Remote Control Available
The X96 Continuous Weight Scale Measurement System is ideally suited for weighing materials on belt conveyors, screw conveyors, drag chain conveyors, and metal plate conveyors. Measurements of the processes are made without making contact with the process material. Since all system components never contact the process; extreme temperature, corrosive, toxic, or abrasive materials do not affect the continuous on-line weight measurement. The non-contact gamma weight scale is not affected by belt misalignment, changes in belt tension, or hostile conditions.

Each system consists of a gamma source, detector, microprocessor, and a frame assembly for mounting the system around a conveyor. The gamma source, typically mounted over the top of the conveyor, emits energy through the process collimated in a direction towards a detector, mounted under the conveyor. The maximum possible gamma energy reaches the detector when the conveyor is empty. As the weight of the process increases on the conveyor, the gamma energy reaching the detector will decrease in an inversely proportional relationship to weight. The detector measures this changing gamma field and sends a proportional signal to the microprocessor. The X96 microprocessor linearizes, filters, and correlates this signal to a weight measurement. A graphic LCD display and outputs are then generated to meet the application requirements, typically including weight, rate, and speed. If the conveyor speed varies, a tachometer is attached to the shaft of the conveyor and its signal is inputted into the X96 microprocessor for speed calculation. The X96 can also accept 4-20 mA or 0-10 VDC speed input, or a dry contact signal for run/stop input for constant speed conditions.

FEATURES
- Non-contact Measurement
- Suited for:
 - Belt Conveyors
 - Screw Conveyors
 - Drag Chain Conveyors
 - Metal Conveyor
- Gamma Energy is Absorbed Inversely Proportional to Weight
- Little to No Conveyor Modifications
- Unaffected by:
 - Extreme Temperature
 - Abrasives
 - Corrosives or Toxic Materials
 - Sterile Environment
 - Dust or Moisture

SPECIFICATIONS

Detectors:
- Scintillation Detectors Active Lengths up to 15 Feet
- Ion Chamber Detectors Active Length up to 20 Feet
- Detectors Available in Explosion Proof, NEMA-4X, NEMA-4, and I.S. Configurations

Microprocessors:
- Remote to Detector or Integral in Head of Detector
- LCD Graphic Back-lit Display
- HART Communications
- Three Analog Outputs
- Four Relay Outputs
- Four Solid State Outputs

Source Holders:
- Sealed Housing Made of Ductile Iron, Stainless Steel, or PVC Coated with Internal Rotary Shutter
- Point and Strip Sources
- Low Level Gamma Source Holder
Safest Gamma Gage on the Market – Ronan pioneered the development of ultra-low level sources, to greatly improve safety, and eliminate the requirement for surveys, wipe tests, inspections and much of the documentation. They are so safe the NRC permits their removal and installation without a licensed person being present, translating into significant cost savings for the user.

The RLL-1 ultra low source utilizes very small quantities of radioactive materials. The RLL-1 is permitted to contain a maximum of 900 microcuries (mCi) of cesium-137 (Cs-137) or 200 microcuries (mCi) of cobalt-60 (Co-60). The radioactive material is completely encapsulated in a stainless steel capsule, which is then heli-arc or laser welded closed. Due to high structural integrity, these source capsules qualify as special form material.

Ronan understands that installation costs of instrumentation is a major factor when choosing a technology or vendor. To minimize the need to make changes to your existing installation, Ronan offers a wide variety of source holder designs. In addition to external sources, we manufacture small physical sizes for those with space constraints and insertion types for existing wells.

Whatever the installation requirements, Ronan can work with you to install the safest source for the application.

Features
- Source Material
 - Cesium-137
 - Cobalt-60
 - Americium-241
- Source Sized to Each Application
- Source Holder Options
 - Ultra Shielded with Internal Rotary Shutter
 - Lighter with Safety Shielding
 - Insertion Styles
 - Various Shutter Designs
 - Internal Rotary Shutters
 - External Shipping Shields

Specifications
- All Source Holders have Governmental Approval
- Shielding Standardly Meets International Standards Producing a Radiation Field Not Greater than 5mR/hr at 12 Inches from any Accessible Surface. (Greater Shielding Available for Tighter Standards)
- Materials of Construction Include Ductile Iron, Carbon Steel, Stainless Steel, and PVC Coated Protection
- Sealed Source Holders are Available for Extreme Heat Applications
- Standard Manual Shutter with Position Indicator
- Remote Actuated Shutters Available
Each system must not only contain a radiation source, but must also contain a detector to measure the gamma radiation energy. The Ronan Measurement Systems can be furnished with either an ion chamber detector or a scintillation detector.

The ion chamber detector contains parallel plates stacked in an alternating polarity arrangement sealed in a pressurized chamber. A signal is generated when the radiation field enters the chamber and ionizes in the pressured chamber, creating a current across the parallel plates. This design produces a very rugged detector able to withstand heavy shock and vibration. It uses an ultra stable low bias voltage that is amplified within the detector, easily transmitted to remotely mounted electronics.

The scintillation detector consists of the scintillation crystal, photomultiplier tube, and associated electronics. A signal is generated when the radiation field enters the crystal causing the crystal to scintillate with photon energy, proportional to the incident radiation striking it. This photon energy is converted to electrical pulses in the photomultiplier tube. The detector uses a low voltage supplied from the microprocessor, and can transmit its output over great lengths. Ronan offers many types of scintillation crystal formed in many custom shapes and sizes.

The Flexible detector utilizes a patented non-hazardous, non-flammable scintillating fill-fluid, which is doubly encapsulated and protected by an outer sheath of armored conduit. This newest flexible design offers unique advantages in reliability and sensitivity, while the lightweight construction eliminates the need to employ cranes and rigging for installation. This design is ideal for horizontal or spherical vessels, irregular contours, or parts of the vessels where space is limited.

The flexible detector is available in lengths up to 23 feet (7 meters). For longer level measurements, multiple detectors can be summed in the X96S computer.

Features
- High Detector Efficiency, Excellent Sensitivity – Able to Provide Measurements with Lower Intensity Radiation Source
- Active Length Up to 23 Feet (7 Meters) – Limits the Need for Multiple Detectors, Reduces Cost
- Spring Tension of PM Tube – Maintains Integrity of the Signal Path Under Vibration and when Detector is Mounted Inverted
- Lightweight and Easy to Install – 1.1 lbs/ft (0.5 kg) vs. 15 lbs/ft (6.8 kg) for Solid Crystal
- Can be Shipped via UPS or Other Carriers ...No Need to Ship by Truck – Significant Savings on Freight Cost
- Flexible 12-Inch (0.3 Meter) Radius to Fit Around the Contour of Irregular Vessels
- Fill Fluid: Non-hazardous, Non-flammable
- Improved Linearization Over the Entire Range of Active Length
- Lowest Cost per Foot
- Ronan Quality Manufacturing – Backed by a Three Year Limited Warranty

Specifications
- Construction:
 - Electronics – Stainless Steel
 - Housing – Aluminum as Standard; (304 Stainless Steel Optional)
 - PVC Body – PVC Sheathed Aluminum Armored Flexible Conduit
 - Fill Fluid: Non-hazardous, Non-flammable
 - System Accuracy: +/- 1% Span (Typical)
 - Active Length: Up to 23 Feet (7 Meters)
 - Power Requirements: 24 VDC @ .035 A
- Ratings:
 - UL, Cenelec/Atex
 - Class I, Division 1
 - NEMA-4, NEMA-4X
- Weight: Detector Electronics – 10 lb. (4.6 kg), Body – 1.1 lb (0.5 kg) per Active Foot
- Operating Temperature: 14° to 140° F (-10° to +60° C), Low and High Temperature Options Available

Measurement Detectors

![Explosion Proof Detector Housings](image)
![Ionization Chamber Detector](image)
![Scintillation Detector](image)

Flexible Scintillation Detector in a NEMA-4X Enclosure with I.S. Electronics
The X96S Series of Process Measurement Computers offer calibration and configuration in a simplified format. It provides flexibility and inherent stability of digital processing to process measurements. The diversity of the design enables the customer to choose from a self-contained unit mounted remotely from the measurement, a blind transmitter with various communication options, or any combination in between.

The X96S Series Computers are modular in design, enabling the measurement computer to be tailored to the application requirements. Push-button programming is obtained through the LCD Graphic Display. All programming prompts are in English, with help screens available almost eliminating the need for a manual. Various board configurations accept multiple digital or analog inputs from ion chambers or scintillation detectors, as well as analog or discrete inputs and outputs. Serial communication is available in multiple formats including the HART® format.

FEATURES
- Menu Driven Configuration
- LCD Graphic Backlit Display
- Automatic Source Decay Compensation
- Multiple Point Linearization
- HART Communications
- Dynamic Process Tracking and Filtering
- Isolated Analog Outputs
- Modular Design
- Serial Communications
- Multiple Configurations Include:
 - Full Featured Microprocessor Mounted Remote to Detector
 - Blind Microprocessor Mounted in Detector Head

SPECIFICATIONS
- 90 to 240 VAC or 24 VDC
- HART/4 to 20 mA Current Loop
- Detector Inputs for Ion Chamber or Scintillator
- Four Form “C” Relay Outputs
- Four Solid State Outputs with Capacity of 4.5 to 30 VDC
- Eight Digital Inputs
- Three Analog Outputs
- Temperature Inputs: RTD or Analog
- Analog Inputs of 4 to 20 mA or 0 to 10 V
- RS232/RS485 Communications
- Standard Surface Mount Enclosure is NEMA-4
- Optional Enclosures of Stainless Steel (NEMA-4X) or Explosion Proof
- Optional Panel or Rack Mounting
The Ronan X90 Series of Process Measurement Electronics offers microprocessor-based electronics for point level measurement. These systems offer a simplified push-button field calibration and/or versatility for customization though the use of a hand held programmer. A standard system consists of a gamma radiation source, Geiger-Mueller tube or scintillation detector, and X90 electronics. The gamma source is located in a source holder, which is described earlier in this brochure. Ronan offers various detector designs depending on the application requirements. The Geiger-Mueller tube detector requires a larger radiation field than required by a scintillation detector, but typically is the least expensive choice.

The detector measures the gamma field and transmits this signal strength to the X90 electronics where the point level alarm’s status is indicated and outputted. The X90 triggers an alarm when the detector signal changes by a percentage, which is set up in the software custom to your application. This percent change calculation requires only a single point field calibration on an empty condition, simplifying the field start-up and calibration.

Broad packaging options of the X90 Series offer systems that meet most any requirement. Enclosure options are available for explosion proof, water tight, wash down, and general purpose. The X90 electronics is packaged integral or remotely to the detector, or to meet any custom requirements.

Features
- Push-button Calibration
- Process and Watchdog Alarms
- Modular Design
- LED Alarm Indication
- Field Customization through Menu Driven Configuration
- Serial Communications
- Integral or Remote Electronics

Specifications

Detectors:
- Geiger-Mueller Tube Detectors:
 - Standard Tubes Sensitivity of .2 mR/hr.
 - Extra Sensitive Tubes Sensitivity of .1 mR/hr.
 - Temperature Resistant up to 212° F
 - Explosion Proof or NEMA-4X Housing

Scintillation Detectors:
- Standard Sensitivity of .01 mR/hr.
- Temperature Resistant up to 165° F
- Explosion Proof or NEMA-4X Housings

Microprocessors:
- Integral or Remote to Detector
- Power: 24 VDC, 115 VAC, or 220 VAC
- Two 10 Amp Relay Outputs
- Single or Multi-point Chassis
- Programmable with a Ronan Hand Held Programmer with Push-button Calibration
- LED Indication of Alarm Conditions
- Process and Watchdog Alarms
- Temperature Resistant up to 165° F
- NEMA-4, NEMA-4X, or Explosion Proof Enclosures
WARRANTY

Ronan warrants equipment of its own manufacture to be free from defects in material and workmanship, under normal conditions of use and service, and will repair or replace any electronics found to be defective, on its return, transportation charges prepaid, within three (3) years of its original purchase. This warranty carries no liability, either expressed or implied, beyond our obligations to replace the unit which carries the warranty.

RONAN ENGINEERING COMPANY
Measurements Division
8050 Production Drive, Florence, Kentucky 41042 U.S.A. • 859-342-8500 • Fax 859-342-6426
http://www.ronanmeasure.com • email: ronan@ronanmeasure.com

Ronan Engineering Company • 21200 Oxnard Street, Woodland Hills, California 91367 U.S.A. • 800-327-6626 • Fax 818-992-6435
Ronan Engineering Limited U.K. • 1 Tilley Road, Crowther Industrial Estate, Washington, Tyne & Wear, U.K., NE38 OAE • 191-416-1689 • Fax 191-416-5856
Ronan Engineering Limited • 32 Bermondsey Road, Toronto, Ontario, Canada M4B 1Z5 • 416-752-0310 • Fax 416-752-8072